- (5) K. P. C. Vollhardt and R. G. Bergman, J. Am. Chem. Soc., 96, 4996 (1974).
- (6) K. P. C. Vollhardt, J. E. Bercaw, and R. G. Bergman, *J. Am. Chem. Soc.*, **96**, 4998 (1974).
- (7) R. L. Hillard III, and K. P. C. Vollhardt, unpublished observations.
- (8) The strain inherent in 1 is possibly equivalent to the strain encountered in 1,2:4,5-dicyclobutabenzene, a tricyclic benzenoid system: M. P. Cava, A. A. Deana, and K. Muth, J. Am. Chem. Soc., 82, 2524 (1960).
- (9) K. C. Frisch and R. B. Young, J. Am. Chem. Soc., 74, 4853 (1952); Aldrich Chemical Co.
- (10) Compound 3 does not trimerize under the reaction conditions.^{11a} Considerably lower yields of 1 are obtained when equimolar amounts of 2 and 3 are employed⁵ (3%) or 2 is added to excess 3 in one portion (8%).
- (11) (a) H. Sakural and J. Hayashi, J. Organomet. Chem., 70, 85 (1974); (b) R. S. Dickson and P. J. Fraser, Adv. Organomet. Chem., 12, 323 (1974).
- (12) All new compounds reported gave satisfactory analytical and/or spectral data.
- (13) U. Krüerke, C. Hoogzand, and W. Hübel, Chem. Ber., 94, 2817 (1961).
- (14) Aromatic rings can significantly distort from planarity without losing aromatic character: H. Wynberg, W. C. Niewport, and H. T. Jonkman, *Tetrahedron Lett.*, 4623 (1973).
- (15) ¹H NMR (CCl₄) τ 2.86 (s, 2 H), 6.86 (s, 4 H), 9.67 (s, 18 H); ¹³C NMR (CDCl₃) ppm 2.41 (SiMe₃), 30.2 (C_{1,2}), 129.1 (C_{3,6}), 144.3 (C_{4,5}), 145.9 (C_{7,8}); uv λ_{max}^{EiOH} large end absorption, 226 sh (ϵ 10,200), 248 sh (11,000), 266 (620), 272.5 (815), 280.5 nm (645).
- (16) (a) A. J. Jones, P. J. Garratt, and K. P. C. Vollhardt, Angew. Chem., Int. Ed. Engl., 12, 241 (1973); (b) W. Adcock, B. D. Jupta, T. C. Khor, D. Doddrell, D. Jordan, and W. Kitching, J. Am. Chem. Soc., 96, 1595 (1974); (c) J. B. Stothers, "Carbon-13 N.M.R. Spectroscopy", Academic Press, New York, N.Y., 1972.
- (17) C. Eaborn, D. R. M. Walton, and D. J. Young, J. Chem. Soc. B, 15 (1969).
- (18) (a) C. S. Cheung, M. A. Cooper, and S. L. Manatt, *Tetrahedron*, **27**, 701 (1971); (b) G. L. Hardgrove, L. K. Templeton, and D. H. Templeton, *J. Phys. Chem.*, **72**, 668 (1968).
- (19) A. R. Bassindale, C. Eaborn, and D. R. M. Walton, *J. Chem. Soc. B*, 12 (1969).
- (20) See R. P. Thummel, *J. Chem. Soc., Chem. Commun.*, 899 (1974), and the references therein.
- (21) See, for instance, H. P. Figeys, Top. Carbocyclic Chem., 1, 269 (1969).
- (22) Similar observations were made in the case of *a*-bis(trimethylsillyl)benzene, but prolonged exposure to high temperatures and acidic catalyst were necessary to effect isomerization: D. Seyferth and D. L. White, *J. Am. Chem. Soc.*, **94**, 3132 (1972).
- (23) (a) F. R. Jensen, W. E. Coleman, and A. J. Berlin, *Tetrahedron Lett.*, 15 (1962); (b) R. D. Haworth and F. H. Slinger, *J. Chem. Soc.*, 1321 (1940).
- (24) A structural determination of **1** is in progress.

W. G. L. Aalbersberg, A. J. Barkovich, R. L. Funk R. L. Hillard III, K. P. C. Vollbardt*

Department of Chemistry, University of California Berkeley, California 94720 Received May 5, 1975

Stereochemical Course of the Reaction of Iron Carbonyl with Diastereomeric Vinyloxiranes

Sir:

The reaction of the vinylcyclopropyl system with iron carbonyl has been investigated extensively.¹ Recently the analogous reaction with vinyloxiranes has been reported.² This latter system appeared amenable to a detailed stereochemical analysis, and we report results of the reaction using diastereomeric vinyloxiranes.

Starting with the three pure dienes (E,E)-2,4; (Z,Z)-2,4; and (Z,E)-2,4-hexadienes, monoepoxidation yielded the vinyloxiranes 1, 2, 3 + 4, respectively.³ Both thermally and photochemically these compounds reacted with iron carbonyl to yield ferrelactone complexes. The thermal reaction yielded mixtures of diastereomers⁵ but the photochemical reaction⁶ proceeded *completely stereospecifically* (Scheme I).

The starting point for unraveling the stereochemical structures of complexes 5, 6, and 7 was an X-ray crystallographic determination on 7. With this established, NMR studies enabled elucidation of the structures of 5 and 6.

Ferrelactone 7 crystallized in the centrosymmetric orthorhombic space group Pbca. The cell dimensions were a =

Journal of the American Chemical Society / 97:19 / September 17, 1975

Scheme I

12.0732 (16) Å, c = 12.2010 (15) Å, and $\rho_{calcd} = 1.575$ g/cm³ for Z = 8. X-Ray diffraction data ($2\theta_{max} = 50^{\circ}$, Mo K α radiation) were collected with a Picker FACS-1 diffractioneter and the structure was solved via Patterson, Fourier, and least-squares refinement methods. The final discrepancy indices were $R_{\rm F} = 3.21\%$, $R_{\rm wF} = 3.06\%$ for 2377 independent reflections. The molecular structure, with selected bond distances, is shown in Figure 1.

Figure 1. Molecular geometry of ferrelactone 7. Important intraligand bond distances (in Å) are: C(1)-C(2) = 1.503 (5), C(2)-C(3) = 1.510 (4), C(3)-C(4) = 1.406 (3), C(4)-C(5) = 1.389 (4), C(5)-C(6) = 1.498 (4); C(2)-O(2) = 1.438 (3), O(2)-C(7) = 1.364 (3), C(7)-O(7) = 1.211 (3). Iron-carbon bond distances are: Fe...C(3) = 2.090 (2), Fe...C(4) = 2.077 (3), Fe...C(5) = 2.209 (3), and Fe-C(7) = 1.985 (2).

Using the ¹H NMR spectrum of 7 as a reference the relative stereochemistries of 5 and 6 were determined by analysis of coupling constants and induced chemical shifts (Table I). First, comparing 5 and 7 the only difference in coupling constant is the vicinal coupling ${}^{3}J_{2,3}$ of 4.0 Hz in 5

		Chemical	
		shifts	Coupling constants
Compound	Position	(ppm)	(Hz)
5	1	1.34	$J_{1,2} = 6.5$
	2	4.39	$J_{2,3}^{1,2} = 4.0$
	3	4.58	$J_{3,4}^{3,5}$ = undetermined
	4	4.63	$J_{A,s}^{3,2} = 12.0$
	5	4.14	$J_{6,6}^{2,5} = 6.0$
	6	1.88	5,0
6	1	1.43	$J_{1,2} = 6.5$
	2	4.60	$J_{2,2}^{1,2} = 5.2$
	3	5.13	$J_{3,4}^{2,5} = 8.7$
	4	4.31	$J_{A,a}^{3,7} = 9.7$
	5	4.81	$J_{6,6}^{7,5} = 7.4$
	6	1.80	530
7	1	1.32	$J_{1,2} = 6.5$
	2	4.25	$J_{2,3}^{1,2} = 1.2$
	3	4.38	$J_{2,4}^{2,5} = 7.5$
	4	4.77	$J_{A,s}^{3,*} = 12.0$
	5	4.03	$J_{6,6}^{7,2} = 6.0$
	6	1.84	990

 a NMR spectra were obtained using a Varian HA-100 or HR 220 with TMS as internal standard at δ 0.00 ppm and CDCl₃ as solvent.

compared to 1.2 Hz for trans ${}^{3}J_{2,3}$ in 7 suggesting a cis arrangement for these protons in 5. Similarly ${}^{3}J_{2,3}$ of 5.2 Hz in 6 indicates a cis relationship. Considering the C_4 and C_5 protons, values of 12.0 Hz in 7 and 5 fix these as trans while a value of 9.75 Hz indicates a cis orientation in 6. Further evidence for the relative stereochemistry at C_4 and C_5 in 5, 6, and 7 was obtained by observing induced chemical shifts using $Eu(fod)_3$. The induced downfield shifts for the C₅ proton in 5, 6, and 7 were 10.0, 9.9, and 3.8 ppm per mole of $Eu(fod)_3$ per mole of ferrelactone, respectively. The downfield shifts for the C_5 -methyl group in 7, 5, and 6 were 2.1, 2.1, and 5.8 ppm per mole of Eu(fod)₃ per mole of ferrelactone, respectively. Assuming a model in which the shift reagent is coordinated with the lactone ring, the relative large shift of the C_5 methyl group and relatively small shift of the C_5 proton in 6 indicates a cis stereochemistry. Since 7 is known to be trans (X-ray), similarity in its shift behavior with 5 indicates a trans stereochemistry for the latter.

With the structures of ferrelactones 5, 6, and 7 established, the stereochemical results may be summarized as follows: $1 \rightarrow 5$ proceeds with *retention* of configuration about the C₄-C₅ double bond, but a *change* in the relative configuration between C₂ relative to C₃. This change amounts to rotation about the C₂-C₃ bond. Reaction $2 \rightarrow 6$ proceeds with overall *retention* of the stereochemical relationships between reactant and product.

In the sequence of reaction steps leading to the ferrelactone the generation of the allylic system is of key importance. A priori this could occur in two distinct ways, namely, initial complexation of the double bond with photochemically generated $Fe(CO)_4$ followed by cleavage of the oxido ring and lactone formation, or, alternatively, initial complexation of the oxido oxygen with the electrophilic $Fe(CO)_4$ and ring cleavage followed by lactone formation. Since neither route uniquely accounts for the observed stereochemical course, the mechanistic aspects of this reaction remain a continuing research objective.

Acknowledgments. This work was generously supported by a grant from the National Science Foundation (GP-42724X, to M.R.C.) and by an allocation of time on the IBM 370/158 computer at the Computer Center of the University of Illinois at Chicago Circle.

References and Notes

Int. Ed. Engl., 10, 190 (1971); (c) Angew. Chem., 83, 176 (1971); Angew. Chem., Int. Ed. Engl., 10, 188 (1971); (d) Angew. Chem., 84, 583 (1972); Angew. Chem., Int. Ed. Engl., 11, 522 (1972); (e) R. M. Moriarty, C.-L. Yeh, and K. C. Ramey, J. Am. Chem. Soc., 93, 6709 (1971); (f) A. Elsenstadt, Tetrahedron Lett., 2005 (1972); (g) R. Aumann, J. Organomet. Chem. 47, C29 (1973); (h) R. M. Moriarty, C.-L. Yeh, K.-N. Chen, and R. Srinivasan, Tetrahedron Lett., 5325 (1972); (l) D. Ehnholt, A. Rosan, and M. Rosenblum, J. Organomet. Chem., 56, 628 (1973); (j) R. M. Moriarty, K.-N. Chen, M. R. Churchill, and S. W. Y. Chang, J. Am. Chem. Soc., 96, 3661 (1974).

- (2) R. Aumann, K. Fröhlich and H. Ring, Angew. Chem., 86, 275 (1974), Angew. Chem., Int. Ed. Engl., 13, 275 (1974), and references cited therein.
- (3) EpoxIdation⁴ of *trans,trans*-2,4-hexadlene (CH₃CO₃H, CH₂Cl₂, 0°) yielded 1 in 89% yield: bp 21-22 (0.05 mm); NMR δ H₁ 1.29, H₂ 2.86, H₃ 3.00, H₄ 5.91, and H₈ 1.70; *J* (H₂ J_{1,2} 5.2, J_{2,3} 2.2, J_{3,4} 8.1, J_{3,5} 0.4, J_{4,5} 15.6, J_{4,6} 1.6, and J_{5,6} 6.6. *cis,cis*-2,4-Hexadiene yielded 2: bp 20-21 (0.08 mm); NMR δ H₁ 1.25, H₂ 3.19, H₃ 3.62, H₄ 5.22, H₅ 5.85, and H₈ 1.78; *J* (Hz) J_{1,2} 5.5, J_{2,3} 4.4, J_{3,4} 8.1, J_{3,5} 1.0, J_{4,6} 1.1, J_{4,6} 1.7, and J_{5,6} 7.1. *cis,trans*-2,4-Hexadiene yielded 3 and 4, and they were not separable by fractional distillation.
- (4) J. K. Crandall and L. H. Chang, J. Org. Chem., 32, 532 (1967).
- (5) The thermal reaction will be reported in the full paper. It was found that 1 with Fe₂(CO)₉ in ether (36°, 2 hr) yielded 7 and 5 in 1:6 ratio in 83% yield. Under the same conditions 2 yielded 7 and 6 in 5:1 ratio in 51% yield.
- (6) İrradiations were carried out in an all quartz system. Compound 5 had mp 130-131°. Anal. Calcd for C₁₀H₁₀O₅Fe: C, 45.11; H, 3.79. Found: C, 45.22; H, 3.90. Acyl carbonyl 1672 cm⁻¹; C≡O, 1990, 2004, and 2034 cm⁻¹. Compound 6 had mp 103-104. Anal. Calcd for C₁₀H₁₀O₅Fe: C, 45.11; H, 3.79. Found: C, 44.99; H, 3.86. Acyl carbonyl, 1674; C≡O, 1999, 2008, and 2040 cm⁻¹. Compound 7 had mp 108-109°. Anal. for C₁₀H₁₀O₅Fe: C, 45.11; H, 3.79. Found: C, 45.00; H, 3.89. Acyl carbonyl, 1670 cm⁻¹; C≡O, 1995, 2005, and 2035 cm⁻¹. The starting 2,3-oxidohex-4-enes were stable under the photolytic conditions in the absence of Fe(CO)₅.
- (7) We consider the coordinatively unsaturated electrophile Fe(CO)₄ to result from photolysis of Fe(CO)₅; see E. Koerner von Gurstorf and F.-W. Grevels, Fortschr. Chem. Forsch., **13**, 379 (1969).
- (8) Visiting Scientist, NIH, 1974-1975.

Kan-Nan Chen, Robert M. Moriarty,^{*8} Barry G. DeBoer Melvyn Rowen Churchill

Department of Chemistry University of Illinois at Chicago Circle Chicago, Illinois 60680

Herman J. C. Yeh

Laboratory of Chemistry National Institute of Arthritis, Metabolism, and Digestive Diseases Bethesda, Maryland 20014 Received May 5, 1975

A Novel Dehydrogenative Cis Double Silylation of Internal Acetylenes with Hydrosilanes. Catalysis by Diethyl(bipyridyl)nickel(II)

Sir:

There have been two types of addition reactions of silicon hydrides to carbon-carbon multiple bonds in the presence of transition metal catalysts. One is the well-known hydrosilylation¹ and the other the recently discovered, nickel or palladium catalyzed, double silylation of dienes and acetylenes with disilicon hydrides involving the cleavage of the Si-Si bond while leaving intact the Si-H bond.² We report here the third type of addition reaction, viz., dehydrogenative, stereoselective cis double silylation of internal acetylenes with monosilicon hydrides catalyzed by diethyl(bipyridyl)nickel(II), as represented by eq 1.

 $RC \equiv CR + HSiX_3 \rightarrow$

Communications to the Editor

^{(1) (}a) R. Aumann, Angew. Chem., 83, 175 (1971); Angew. Chem., Int. Ed. Engl., 10, 189 (1971); (b) Angew. Chem., 83, 177 (1971); Angew. Chem.,